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Synchrony of neural Oscillators induced by random telegraphic currents
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When a neuron receives a randomly fluctuating input current, its reliability of spike generation improves
compared with the case of a constant input curf&fdginen and Sejnowski, Scienc268 1503(1995]. This
phenomenon can be interpreted as phase synchronization between uncoupled nonlinear oscillators subject to a
common external input. We analyze this phenomenon using dynamical models of neurons, assuming the input
current to be a simple random telegraphic signal that jumps between two values, and the neuron to be always
purely self-oscillatory. The internal state of the neuron randomly jumps between two limit cycles correspond-
ing to the input values, which can be described by random phase maps when the switching time of the input
current is sufficiently long. Using such a random map description, we discuss the synchrony of neural oscil-
lators subject to fluctuating inputs. Especially when the phase maps are monotonic, we can generally show that
the Lyapunov exponent is negative, namely, phase synchronization is stable and reproducibility of spike timing
improves.
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[. INTRODUCTION regarding synchronization of uncoupled chaotic oscillators
driven by a common random forcirfd5-18.

It was shown by Mainen and Sejnowski in an experiment  pDye to the difficulty in analyzing multivariable dynamical
using rat neocortical slices that, when a neuron receives models of neurons, most theoretical studies so far have relied
randomly fluctuating input current, its reliability of spike upon direct numerical simulations of specific models such as
generation improves compared with the case of a constatthe van der Pol modéB] and the FitzHugh-Nagumo model
input currenf 1]. Namely, when a single neuron is driven by [9], or have assumed one-variable integrate-fire models or
the same temporal sequence of a fluctuating input current, fualitative phase models of neurofi$-13. Those studies
yields very similar firing patterns at every trial, but when it is revealed that this phenomenon can be observed commonly in
driven by a constant input current, it yields different firing @ wide variety of limit-cycle oscillators that are subject to
patterns from trial to trial. This phenomenon has been repeagxternal fluctuations. o
edly confirmed in many experiments, and its physiological Recently, Teramae and Tanakd4] made significant
relevance has been discus$@ch). progress in understanding the universality of this phenom-

From the viewpoint of nonlinear dynamics, a periodically €non. Using the phase reduction metfiéd], they proved in
spiking neuron driven by a constant external current is @€neral that limit-cycle oscillators always exhibit phase syn-
limit-cycle oscillator[4—14). A spike is generated when the chronization when they are subject to very weak Gaussian-

P ; hite forcing. The standard phase reduction procedure can
phase of this I|r_n|t cycle passes through a certain thresholé(%’ ly be appﬁ]cable when the dpeformation - theplimit Cycle is
leﬁr%nvx(;ir?art]hg]tsearﬁ::tir:el?f?;??err::zzs:rsei?elgtr?qggsﬁrgmq’ ry small[4,5]. Therefore, in their analysis, fluctuation of

using the, P . Ing &H input was assumed to be vanishingly small, so that it did
on multiple identical neural oscillators, which are mutually not

ind d b . i h affect the structure of the limit cycle. However, in many
indepen ent but receive a common external input. The redynamical models of neurons, the input current is a bifurca-
sulting improvement in spike timing corresponds to the

o ) _.tion parameter whose variation easily leads to deformation of
phase synchronization of those uncoupled oscillators with

#heir limit-cycle orbits.
common external forcing. The difference in the timing of y

. . . O In this paper, we treat this problem in a different setting.
sp|k<_a.generat|on. bg—:-tween d|ﬁ¢r§nt trials is due to th? negtr% order to make a general statement about phase synchroni-
stability of the limit-cycle orbit in the phase direction, in

hich the bh diff d | disturb o zation, we consider a simplified situation. That is, we assume
which the phase diffuses due to external disturbances. On thge it current to be a simple random telegraphic signal

other hand, a heuron driven by a fluctuating inp_ut cu_rren_t i%hat jumps between two values, and also the neuron to al-
a random dynamical system. The improvement in spike tim:

C O X . - ways be self-oscillatory. The fluctuation need not be vanish-
ing implies some underlying mechanism that statistically stay, ., small. Owing to these assumptions, we can reduce the
bilizes the limit-cycle orbit in the phase direction due to the

fl L Similar situati h IS0 b di ynamics of the system to simple random maps. Though
uctuating input. Similar situations have also been discussef}qqe assumptions are not physiologically realistic, they en-

able us to understand the phase synchronization of limit-
cycle oscillators due to a common fluctuating input more
*Electronic address: nakao@ton.scphys.kyoto-u.ac.jp generally from the viewpoint of nonlinear dynamics.
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Il. PHASE SYNCHRONIZATION INDUCED BY
FLUCTUATING CURRENTS

In this section, using the FitzHugh-Nagumo neuron model
[6] as an example, we demonstrate that the reproducibility of
spike timing improves even if we use a random telegraphic
signal that jumps between only two values instead of taking
continuous values. Let us consider the following FitzHugh-
Nagumo model subject to a fluctuating input current and also
to external disturbances:

eU=v+A-Bu+ &),

trial no.

. U3
b=v =2 Ut IO+ (). (1)

3
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Here, the variables andv represent refractoriness and acti- tme
vation (or membrane potentiabf the neurone is a small FIG. 1. Temporal evolution of activation variahle phase, tim-

dimensionless parameter that corresponds to the time COfhg of spike generation, and variance of the phase for a constant
stant of the refractoriness variable, aAdcand B are param- input currentl(t)=0.9. Results of 50 trials on a single FitzHugh-

eters.(t) represents a time-dependent input current to thelagumo oscillator(or a single trial on 50 independent oscillators
neuron.&(t) and 7(t) are Gaussian-white noises of mean Oare shown in each figure, except the bottom figure.
and varianceD that are introduced to represent various ex-
ternal disturbances to the neuron, whose correlation func- On the other hand, Fig. 2 shows temporal evolution of the
tions are given by same 50 FitzHugh-Nagumo oscillators subject to a common
fluctuating input current(t) that jumps betweeih,=0.8 and
(EO&()) =Dat-t'), (pt)nt"))=Dst-t"). (2)  |,=1.0. Here, the phase defined along the limit cycle corre-
We fix the parameters at=0.08, A=0.7, B=0.8, and the SPonding tol(t)=I, is used in drawing the figure. The
noise strength aD=10" unless specified otherwise. switching time is set at= v‘1:209, which is about 5 times
When the input current(t) takes a constant valugt)  larger than the period of the FitzHugh-Nagumo oscillator
=1,, this FitzHugh-Nagumo model exhibits limit-cycle os- (@Pproximately 36.5 a4 =0.8). In this case, dispersion of the
cillations for 0.33<1,<1.42. We define the time of spike Phase is strongly suppressed. The spike timing coincides
generation for this FitzHugh-Nagumo oscillator as the mo-ell among the oscillators, and the variance of the phase
ment at which the variable changes its sign from <0 to takes very ;mall \'/a'lues 'except during several short mFerv.aIs.
v >0 on the limit cycle. We take this point as the origin, and From this f|gure, it is evident that_the_phase synchr_onlzatlon
define a phase that increases with a constant angular veloci@}f the oscillators(and corresponding improvement in spike
along the limit cycle(see the next sectigh4,5]. t|m|_ng) occurs even ifl(t) take_s only two values and the
The fluctuating input currentt) is generated by a random ©scillators are always self-oscillatory.
telegraphic process, which jumps between two valyesd

I, at random moments following a Poisson procgks). If % H ]
we denote by the probability forl(t) to change its value in . _({
an infinitesimal time intervadlt, the distributionP(T) of the 2
time interval T during whichI(t) stays at one of the two . 1}
values is exponential 205/
[=% H
1 T 0
where 7=v"! represents the mean switching timel . E =1 -
Figure 1 shows temporal evolution of an ensemble of 50 0
noisy FitzHugh-Nagumo oscillators described by Eij) g2 L L ]
subject to a constant input currdiit)=0.9[or 50 trials on a R —
single oscillator using the sami¢t)], where the activation 2 b LLL [ | L L [T TR B

variablev, the phase, the moments of spike generation, and ~ 200000 200200 200400 200600 200800 201000

the variance of the phase are plotted. Though all oscillators time

start from the same initial condition, the phases of the oscil- g 2. Temporal evolution of activation variahle phase, tim-
lators disperse considerably due to the external no#$8s ng of spike generation, and variance of the phase for a fluctuating
and 7(t) after a long time. Correspondingly, the timing of input currentl(t) that jumps betweeh =0.8 andl,=1.0. Results of
spike generation differs considerably among the oscillatorsso trials on a single FitzHugh-Nagumo oscillator are shown in each
and the variance of the phase is consistently large. figure, except the bottom figure.
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FIG. 3. Limit cycles of the FitzHugh-Nagumo model Ht) FIG. 4. Phase map#,=f,(6;) from LC1 to LC2, andé,

éll:O.S andl(t.)Ellzzl.O. Points on the limit cycle 1 and their =f,(6,) from LC2 to LC1 forl,=0.8 andl,=1.0. Origins of the
images on the limit cycle 2 are connected by arrows. maps are shifted arbitrarily for simplicity. Trivial identity map for

1,=1,=0.9 is also shown.

IIl. REDUCTION TO RANDOM PHASE MAPS ) )
neutrally stable. Therefore, in the presence of external distur-

In this section, we reduce the dynamics of our limit-cyclebances, the phase perturbation gradually increases, resulting
oscillators driven by a random telegraphic current to randonin different spike timing between trials.
phase maps, and discuss its stability in the phase direction. Let us consider the situation in which the input current is
We adopt the FitzHugh-Nagumo neuron mojdgd. (1) with-  1(t)=1; and the system has phasg on LC1. Whenl(t) is
out the external noise terngét) and »(t)] as an example, but switched tol(t)=1,, the system is on a certain isochron of
our argument itself is generally applicable to a wide class o£.C2 whose phase i9,, and it gradually approaches LC2.
limit-cycle oscillators. Thus, a point on LC1 at phagg is mapped to a new point

on LC2 at phase,. We denote this map a&=f,(6;). Simi-
o larly, we denote the map from a point on LC2 at phégéo
A. Random phase maps between limit cycles a new point on LC1 at phas@ by 6;=f,(6,).

Corresponding to two values dft), our system jumps Figure 3 shows LC1 and LC2 of the FitzHugh-Nagumo
between two phase spaces, namely, a phase space corféodel atl;=0.8 and,=1.0, where the mapping from LC1 to
sponding tol(t)=1, that has a limit cycle “1"(LC1), and LC2 is shown by arrows. Figure 4 shows corresponding
another phase space correspondint(tio=1, that has a limit ~Phase maps,=f;(6;) and6;=f,(6,) between LC1 and LC2.
cycle “2” (LC2); see Fig. 3. When the switching timeof ~ For comparison, a trivial identity map fég=1,=0.9 is also
I(t) is much larger than the relaxation time of the orbit to theshown. In drawing the maps, the origin of each limit cycle is
limit cycle on each phase space, our system is almost alway@bitrarily shifted for simplicity so thaty;=0 of LC1 is
on one of the limit cycles. If a phase is defined on each limithapped tof,=0 of LC2 and vice versa. This does not affect
cycle, the temporal evolution of the system can be describet€ stability analysis given below. _ _
as an alternate phase mapping between two limit cycles. Let us start from the moment at whicttt) switches from

Following standard procedufd,5], we define two phases |1 t0 I2. [(t) maintains the valug, for a duration ofT,, then
6, and 6, on LC1 and LC2, respectively. Each phase in-Switches tol; and maintains this value for a duration Bf.
creases with a constant angular velocity on its limit cycle,During this switching process, the poirgy on LC1 is
and is normalized by the period of the limit cycle so that itsmapped to the pointd,=f;(6;) on LC2 first, then it is
range is[0,1], where 0 and 1 represent the same phase. Theapped to the new poirf(6;) + w,T, on LC2 by the con-
definition of the phase can be extended to general phasetant increase of the phase, E@). This point is then
space points that are not right on the limit cycle except phasgapped back to the poirft(f1(6,) + w,T,) on LC1, and fi-
singular points. It is achieved by identifying such a pdht nally mapped tof,(f;(6;) + w,T,) +w,T; by the constant in-
in the phase space with a poi@tright on the limit cycle in  crease of the phase, E@). If we denote the phase on LC1
such a way that an orbit starting frofhand another starting immediately after theth switching ofl (t) to |, as#,(n), and
from Q asymptotically coincide. A set of points that have the phase on LC2 immediately after the succeeding switch-
equal phase is called an isochron. On the limit cycles, théng of I(t) to I, as 6,(n), they obey

phases evolve according to
_ _ 0,(n) = £1(61(N)) + Ty, O1(N+ 1) =F5(6,(N)) + w1 Ty,
01=w;, 0= wy, (4) ©)
where w; and w, are angular velocities of LC1 and LC2. Since T, and T, are random numbers whose distribution
When(t) is constant, perturbation in the phase direction isP(T) obeys Eq.(3), these equations describe random maps.
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The time stem is roughly related to the actual timteasn  =(dfy/d6,)g,=4,1n). Thus, at large time steps, A6,(n) ex-
=1/27, because the mean switching timeris pands as
Evolution of probability density functions(PDF9 1
p1(61,n) and p,(6,,n) of the phasewd; and 6, is given by A6y(n) | _ , ,
two Frobenius-Perron equations convoluted with transition | Ag,(0) _HEIOHZ(GZ(m))' [f2(6u(m))]

kernels that represent random shifting on LC1 and on LC2

duri dom duration3; and T, [20 n m
uring random duration$; and T, [20] _ exp[ S loglf5(a,m)| + S, loglF1(6,(m))
m=0 m=0

ool B = f AOW (65— ) f 401806, - 11(6))1pa(OL1),

= eXF{()\Z + )\1)”], (10)
where we introduced Lyapunov exponents of the nfa@sd
p1(6,n+1)= f do;Wy(6, - 67) f de,d 6, f2
1
— £,(65)1pa(65,1). (6) A =(log|f1(6y)]) = f p1(61)log|f1(6,)[d6y,
0
Here,W; andW, are given by
1
Wy(6y) = D P( 0+ ] )i A2 =(log|f5(6,)]) = fo pa(62)log|f5(6,)[d6,. (11
j=0 w1 /Wy
o Onl(wr7) A6,(n) also evolve_s in the_same way. If the total gyapunov
0=s6,<1), exponenh =\, +\, is negative A6,(n) andA 6,(n) shrink on

= — e U e > :
wyr(1 - e ienn) average, so that the deviations from the original orbits

caused by external disturbances are canceled. Thus, the value
(.92+j) 1 of \ gives a(local) condition for the phase synchronization

Wy(6,) = 2, P

=~ between limit cycles, and improvement in spike timing.
]:

Wy /W

~ 0ol (wp7) C. Asymptotic stability in the slow switching limit

e
T wpr(1— e Moz 0=6<1). @) As mentioned previously, even if the functional forms of
f, and f, are explicitly given, it is not easy to calculate the
The PDFs are expected to reach stationary sfate) and  stationary PDFspy(6;) and p,(6,) analytically, and the
;32(02) Sufficiently after the initial transient stage. But, it is Lyapunov exponenp\ which depends on them. However,
generally difficult to calculate these stationary PDFs analytiwhen the switching timer of 1(t) is sufficiently large, the
cally even if the mapsf; and f, have simple functional stationary PDFs of the phases are nearly unif¢see Eq.
forms. However, in the limit of large switching timeof I(t),  (8)]. In this limit, we can obtain sufficient conditions of
we haveWy(61) —1 and W,(6,) —1; hence, the stationary phase synchronization for genefalandf,: when the phase
PDFsp,(6,) andp,(6,) approach uniform distributions in the maps f§ and f, are monotonic, the Lyapunov exponents

large-r limit always nonpositive
_ _ For example, when they aretrictly) monotonically in-
pl(gl) - 1! p2(02) — 1. (8) Creas|ng

Thus, whenr is sufficiently large, they can be approximated £1(6) >0, f4(6,)>0, (12)

by uniform distributions.
we can prove thak, is always nonpositive as

B. Lyapunov exponent fl

1
Improvement in spike timing is a result of statistical sta-M 0 log f3(61)d6; < fo [1(61) = 116,

bilization of the orbit against phase perturbations. Such sta- L

bility is characterized by the Lyapunov exponent of the ran- _f £(0)d6, - 1=0 (13)
dom maps, Eq(5). Let us consider temporal evolution of ot VERL =7

small deviationsA 6;(n) and A6,(n) from the original orbits

6,(n) and 6,(n). These small deviations obey the following Where we utilized the fact thaftyf;(6,)dg; =f,(1)~f,(0)=1

equations in the linear regime: becausd(#,) is a phase map. The equality holds only when
, ) , f1(61)=6,, namely, when the phase map is a trivial identity

Afy(n+1) =£5(0,(M)AG(N) = f5(0,(N) F1(0:(N)AGL(N), map. The similar argument also holds fas. Thus, for

monotonically increasing, andf,
A +1)=f; +1)A0;(n+1
(n+ 1) =11(6:1(n+ 1) A6 (n+ 1) A =0, A,=0, (14)
=f1(61(n+ 1))f5(62(n))Aby(n), 9
180+ 1)) A1) © always holds, so that the total Lyapunov expon&mth,
where  f1(61(n)=(df1/d61) =g ) and f3(6,(n))  +\, is always nonpositive. We can also prove thais al-
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FIG. 5. Phase diagram of the FitzHugh-Nagumo model where FIG. 6. Temporal evolution (_)f small deviations_in the FitzHugh-
four different domains are shown in different gray levels or colors.l\lagumo mod_gl, where the input currents {5_(_"6 11=0.80/5
On the diagonal, the maps are monotonic ar€0. In the diamond =1.0A<0); (i) |1:0.90_;|2:O.9(I?\:O); and (i) 1;=0.34/
region around the diagonal, the maps are monotonichand. In :0.4(IA_>0). For iach pair of the input currents, three curves cor-
the outer regions, the maps are not monotonic but)stllO. In the responding tor=»""=2000, 1000, and 500 are plotted.
top-right and bottom-left small regions, the maps are not monotonic Figure 6 shows temporal evolution of small deviations
andA>0. (In|A6,(t)/A6,(0)|) that are calculated using EffL) without

external noises. Three pairs of input currents are chosen from

ways nonpositive when the phase maps are monotonicallfhree different domains in the phase diagrafi I,
decreasing by a similar argument. Therefore, small devia=0.80),=1.0A<0); (i) 1;=0.901,=0.90A=0); and (i)
tions from the original orbits always shrink by applying a|,=0.34|,=0.40\ >0).The small initial deviation is set at
slowly switching input current, when the phase maps be'Aal(O):0.0lwl, where the periodT;=w;* of LC1 is ap-

tween limit cycles are monotonic. proximatelyT,=36.5 forl,=0.80,T,=36.4 forl;=0.90, and
T,=46.8 for1,=0.34. Temporal sequences of the deviation
IV. PHASE DIAGRAMS are numerically averaged over 15 000 realizations of the ran-

dom telegraphic current. For each pair of the input currents,

In this section, following our previous argument, we nu-three curves corresponding to three different values of the
merically calculate phase mapgand f, for three different  switching time,r=»"1=2000, 1000, and 500, are shown. By
neuron models, and draw phase diagrams of phase synchrasing rescaled tim&/27=n, those curves for different val-
nization in thel—l, plane. ues of r roughly collapse to a single curve, which indicates
that our argument also holds, at least approximately, for large
but finite 7. It can clearly be seen that the deviation grows,
shrinks, or stays constant corresponding to the three values

First, we present results for the FitzHugh-Nagumo modelof the Lyapunov exponent.
The input current$; andl, are varied between 0.4 and 1.4.

A. FitzZHugh-Nagumo model

The system always exhibits limit-cycle oscillation between 13
these values. Figure 5 displays a phase diagram of the 12
FitzHugh-Nagumo model in the—I, plane, where four dif-

ferent domains represent four combinations(iofwhether 11
the mapsf,; and f, are monotonic, andii) the sign of the

Lyapunov exponenh calculated fromf; and f, assuming 10 §
uniform phase distribution. On the diagonak|,, f; andf, ~ :
are trivial identity maps. In this case is not negative but 9
equals zero, though, and f, are monotonically increasing.

In the diamond region around the diagonal,is negative 8
from our previous discussion, becauseand f, are mono-
tonically increasing. In the outer regiofy, and f, are not
monotonic butA is still negative. In the upper-right and 6 &
lower-left narrow regionsf; andf, are not monotonic, and 6 7 8 9 10 11 12 13
is positive. Therefore, if we switch the input current in these 1,
small regions, dispersion of the phase is enhanced, and the

spike timing becomes more scattered than the case of a con- FIG. 7. Phase diagram of the Hindmarsh-Rose model. Presented
stant input current. in the same way as in Fig. 5.
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20 B. Other neuron models

Here, we present results for the Hindmarsh-Rose model
and for the Hodgkin-Huxley model of spiking neurons.

The Hindmarsh-Rose model is given by the following
three-variable equatiori21]:

x=y-ac+hbl+I1(t) -z,

18

y=c-dx¥-vy,

z=r[s(x-x,) - Z], (15

wherex represents membrane potentialrepresents recov-

1010 12 14 16 18 20 ery variable due to fast ion channels, and the third variable

I, represents relaxation current due to slow ion channels that
are important for burst spiking. The parameters are fixed at

FIG. 8. Phase diagram of the Hodgkin-Huxley model. Presentecd=1, b=3, ¢=1, d=5, r=0.006,s=4, andx;=-1.6. This
in the same way as in Fig. 5. model exhibits various self-oscillatory states for a constant

input I(t) =1y when 1.3k 1,<25.3.

Thus, by calculating phase maps, we can draw a phase Figure 7 displays a phase diagram of this model in the
diagram of phase synchronization. Especially in the vicinityl,—I, plane in the same way as Fig. 5 of the FitzHugh-
of the diagonal wheré; andl, are close)\ is always nega- Nagumo model, wherk andl, are varied between 6 and 13.
tive, and phase synchronization induced by a fluctuating inAs in the case of the FitzHugh-Nagumo model, the
put occurs. For this FitzHugh-Nagumo model, the phase synkyapunov exponent is zero on the diagonal, and is negative
chronization also occurs in a wide parameter region, wheré the vicinity of the diagonal where the phase maps are
phase maps are not monotonic. This is due to the topologicaihonotonically increasing. Thus, this model also possesses
constraint of this model. Since its phase space dimension igarameter regions where phase synchronization induced by a
only 2, the expansion of phase difference is suppressed evédluctuating input current occurs. In the outer regions the

if the phase maps become nonmonotonic. phase maps are not monotonic, anthkes both positive and
(@) (b)
W= =ne] T 1 o
- 1,=12.0,1,=12.0 A ] - 1=12.0,1,=12.0
08]...1,=12.9,1,=11.1 A 08 |...1,=13.0,1,=11.0 .
0.6 4 0.6 .
> /o >
0.4} : 0.4 [ .
ok ’ | ook / | FIG. 9. Phase map8,=f,(6;)
1 “l and 6,=f,(6,) of the Hodgkin-
ool 1 ool 1 Huxley model for several pairs of
00 02 04 06 08 10 00 02 04 06 08 1.0 the input currentd; and I, ()
0 0 1,=11.1),=12.9; (b) 1,=11.0J,
© (d) =13.0; (c) 1,=10.9/,=13.1; and
L0 Lo (d) 1,=10.8),=13.2. Origins of
Y—1=109,1,=13.1| | ! “|—=1,=108,1,=132| | the maps are arbitrarily shifted.
- 1)=12.0,1,=12.0 f ] —-1,=12.0,1,=12.0 Trivial identity map for 1,=I,
0.8|...1,=13.1,1,=10.9 A 08|...1,=13.2,1,=10.8 7 =12 is also shown in each figure.
0.6 - 0.6 .
Fesy D
0.4 . 0.4 ' :
02} / . 02} 7 i
L L 5
ool L 111 ool 1L 1 1 /i
00 02 04 06 08 10 00 02 04 06 08 10
0 0
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(a) v 1
ap=0.07exp-—1|, B=—F———,
20 p(30—0 )
ex +1
10
3 1 0.01(10 -
oo oz —20UL0-v) Bn:0.125ex;€— 1). (17)
() 500000 1000000 1500000 2000000 exp( 10 _U> -1 80
t 10
(c) The parameters are fixed &,=120, Ey,=115, Gx=36,

Ex=-12,G,=0.3, Ve~ 10.613, andC,,=1.0. Given a con-
stant input current(t)=1,, this model exhibits limit-cycle
oscillation whenl,>8.9.

Figure 8 displays a phase diagram in thel, plane.l;
andl, are varied between 10 and 20, where the system ex-
hibits limit-cycle oscillation. Similarly to the two previous
cases, the Lyapunov exponents roughly zero on the diag-
onal. In the vicinity of the diagonal, the phase maps are

3 2

100 107 10" 10”10 monotonic; hence) is negative. In the outer region the
! 10°s phase maps become nonmonotonic artdkes both positive

] ] ] . and negative values. Due to numerical errors, borders be-
FIG. 10. Noisy on-off intermittency exhibited by an ensemble of tween different domains are somewhat blurred

50 FitzHugh-Nagumo oscillators subject to a fluctuating current. Since phase-space dimensions of the Hindmarsh-Rose
Parameters are the same as that used in Fig. 2, and the noilsﬁ

R . odel and the Hodgkin-Huxley model are larger than 2, the
strength isD=10 ". (&) Temporal sequence of the phase vanance, , ological constraint is less tight for these models. Thus, the
s(t). (b) Distribution P(l) of the laminar intervald obtained from poiog 9 ) ’

s(t). The threshold value used to separate bursts from laminar r11aps between two limit CYCIGS Can_ ea_SIIy be complex when
gion is s;,=0.5. Theoretical power law - is also shown for com- they bec_ome npnmonotomc, resu_ltlng_ in the enhancement of
parison.(c) Distribution P(s) of the phase varianceobtained from phase dispersion due to fluctuating input currents. For ex-

s(t). A power-law curves 13 s also shown for comparison. ample, Figs. @a)-9(d) show deformation of the phase maps
of the Hodgkin-Huxley model when the input currents are

: . . varied, so that the difference betweénand |, gradually
negative values. A small number of irregular points arounolncreases At,=10.8 andl,=13.2[Fig. 9d)], the map be-

the borders between domains are due to numerical erroréOmes sufficiently complex for the Lyapunov expongo
When compared with the FitzHugh-Nagumo model, therebecome positive

exist relatively wider regions in which the Lyapunov expo-
nent becomes positive.
The Hodgkin-Huxley model is given by the following V. INTERMITTENT DESYNCHRONIZATION

equations for four variables]; It can be seen from Eq9) that the deviationg\6; and

CmV = GpMPh(Epa— V) + Gn*(Ex = V) A6, obey random multiplicative dynamics if we take fluctua-
tion of the multipliers into account. Thus, they are expected
+ G(Vrest— V) + (1), to exhibit characteristic behavior called on-off intermittency
_ at long time scalef7,16,22—2% The deviations decrease on
m= a1 -m) - Bym, average when <0. However, when small additive external
noises are present in the system as in Eq, they are
h=an(1-h) - Bh, bounded from below at the external noise level. Therefore,

by random multiplication due to fluctuating currents, the
(16) phqse deviations occasionally grow from this Iovx_/er bpund

rapidly to the upper bound determined by the nonlinearity of
whereV is the membrane potentialy andh represent acti- the system, resulting in repetitive transient burstingisy
vation of the sodium channel, amdrepresents activation of on-off intermittency.
the potassium channel. Paramet&g, Gk, and G, repre- There have been a number of studies on this phenomenon,
sent conductances of the channdig,, and Ex represent which have shown that the distributid¥{(s) of the amplitude
their reversal potentials, and.g represents the rest voltage. s of the deviation obeys a power law, and also that the dis-
ay, Bx=m,h,n) are rate constants that are given by thetribution P(l) of the laminar(interburs} interval | during

n=ay(1-n)- BN,

following equations: which the fluctuations takes values lower than a certain
threshold obeys a power law of the folm®[7,16,22—-25
0.1(25-v) v ) ) .
= ———————,  Bm=4dexg - — |, Let us demonstrate this using the FitzHugh-Nagumo
p<25 —v) 1 18 model, Eq.(1). If we consider an ensemble of many oscilla-
10 tors subject to a common external input, the phase difference
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between any pair of oscillators exhibits noisy on-off intermit- holds for a wide variety of limit-cycle oscillators.
tency. Thus, the variance of the whole ensemble of oscilla- In this paper, we only treated the case in which the
tors also exhibits similar temporal intermittency. Such inter-switching timer is sufficiently large. We need further discus-
mittency of the distribution function is reported, e.g., by sions to treat smaller values, for which the PDFs of the
Teramae and Kuramotfl4] for globally coupled chaotic phases are generally not uniform on the limit cycles. There-
maps. fore, we need to estimate the stationary POQk&9;) and
Figure 1Q@a) displays a temporal sequence of the phasé,(6,) from Eq.(6) in some way, for example, by using some
variances(t) of 50 FitzHugh-Nagumo oscillators. The pa- kind of perturbation method. Also, we considered only a ran-
rameters are the same as those in Fig. 2, and the phase aim telegraphic current in this paper, namily, that jumps
fined on LC1 is used. The variansg) is almost always very between only two values. Generalization to the case in which
small, indicating that the ensemble of oscillators is well syn-I(t) takes multiple or continuous values is necessary to treat
chronized in phase. However, it occasionally takes a vergxperimental situations more realistically.
large value, which indicates that the ensemble exhibits burst- Phase synchronization induced by fluctuating external in-
like desynchronization of the phases. Figuretbl@nd 1Gc)  put seems to be a universal phenomenon that is not restricted
display the distributiorP(l) of the laminar intervals and the to specific dynamical models of neurons. The paper by Tera-
distributionP(s) of the burst amplituds obtained from such mae and Tanakfl4] generally proved this fact for a vanish-
time sequences. The characteristic power-law behavior dahgly weak external Gaussian-white forcing. In this paper,

those distribution functions is confirmed. we proved this fact in a different situation, where the forcing
can take only two values which are not necessarily infinitesi-
VI. SUMMARY mal. We also found that the dispersion of phases could be

o . enhanced when the fluctuating input is not vanishingly small.
We analyzed phase synchronization exhibited by a selfa more general formulation of this problem that includes the
oscillatory neuron model subject to a random telegraphic ingpove two situations as special cases is desirable. Studies in

put current by reducing the dynamics of the system 1o rantpis direction are now in progress, and will be reported in the
dom maps. We proved that when the maps between limifire.

cycles are monotonic and the mean switching time of the

input current is sufficiently large, th_e Lyapur!ov exponent of ACKNOWLEDGMENTS

the system always becomes negative, leading to phase syn-

chronization and improvement in spike timing. This result is We thank D. Tanaka, J. Teramae, T. Aoyagi, and Y. Kura-
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